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1. INTRODUCTION

Let C(X) denote the set of continuous real-valued functions on the com­
pact metric space X with metric p. Let M be a Haar subspace of dimension
n in C(X) and, for a given / e C(X), let B(f) or B M(f) denote the best
uniform approximation to/from M. D. J. Newman and H. S. Shapiro [9]
showed the existence of a constant c > 0 such that

11/- mil ~ 11/- B(f)11 + c IIB(f) - mil for all meMo

The strong unicity constant y(f) is the largest such constant c and
0< Y(f) ~ 1.

This paper studies the existence of uniform strong unicity constants y > 0
for subsets of C(X). Cline [3] showed that there is no uniform strong
unicity constant for all of C(X) for X infinite and n> 1. Bartelt [1] showed
that if X is finite then there is a uniform strong unicity constant for all of
C(X), and therefore we assume henceforth that X is infinite. It is known
[5,8,10] that if the compact set S~C[a,b] satisfies SnM=0, then S
has a uniform strong unicity constant. As observed in [4], C(X) has a
uniform strong unicity constant when dim M = 1.

Results on uniform unicity constants in [4] include the following
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theorem which uses the idea of separation of a set. If T s;;: X, then the
separation of T is defined by

sep T= inf{p(x, y): x, yE T, x ¥ y}.

THEOREM 1 (Dunham). Let fb k = 1, ..., be a sequence of functions in
C[a, b] such that the set of extreme points, Eb of fk - B(fk), k = 1, ...,
consists of precisely n + 1 points for each k = 1, ..., and limk ~ 00 sep Ek =0.
Then limk~ 00 y(fk) = 0, i.e., the set Uk: k = 1, ... } does not have a uniform
strong unicity constant.

All of the above results give just necessary or just sufficient conditions for
the existence of a uniform strong unicity constant. Also, in Theorem 1, the
conclusion need not follow without the assumption that each Ek is of
minimal cardinality. For example on [0, 1] with M = n, polynomials of
degree one or less, and for each k = 1, 2, ..., if fk(x) is the piecewise linear
function defined by

if x = 1/3 - 11k, 2/3 - 11k

if x = 0, 1

if x = 1/3 + 11k, 2/3 + 11k

(1.1 )

then the set of functions {fk} has a uniform strong unicity constant even
though limk_ 00 sep Ek = O. If in the same setting fk is the piecewise linear
function defined by

if x = 3/4 - 11k

if x = 0, 3/8, 1

if x = 1/4, 1/2, 3/4 + 11k

(1.2)

then limk _ 00 sep Ek = 0 and the set Uk} does not have a uniform strong
unicity constant. Both examples can be verified by using the charac­
terization of strong unicity constants in (2.1).

The results in this paper completely determine (see Theorem 8) whether
a given set S s;;: C[a, b] has a uniform strong unicity constant by using the
notion of limit extremals. Moreover only Theorems 7 and 8 assume X is an
interval. The paper's results contain all the above mentioned previous
results on the problem of uniform strong unicity constants. In Section 4 the
paper's results are used to show that the class of rational functions studied
by Rivlin does not have a uniform strong unicity constant.

640/55/3-5'
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2. PRELIMINARIES

For f E C(X), X compact metric, and M a Haar subspace of dimension
n> 1, a critical point set is a set of n + 1 points XI' ... , xn + I such that there
exist signs 0" I' ... , 0" n + I and numbers () I' ... , ()n + I , () i > 0, such that
(f - B(f))(xJ = O"i II f - B(f)ll, i = 1, ..., n + 1, and for each j= 1, ..., n,

n+1

0= L (}iO"imixJ
;=1

Let FJ denote the set of functions f E C(X) such that each f has a critical
point set with separation ~ J. Then Dunham [4] proved the following
results for X = [a, b], and the result, with essentialy the same proof, holds
for any compact metric space X.

THEOREM 2 (Dunham). Let M be a Haar set of dimension n in C(X), X
compact metric. Then FJ has a uniform strong unicity constant.

The following characterization of y(f) from [2] will be used:

f(x) - B(f)(x) ( )
y(f) = mi~L x~:r~) II f _ B(f)11 m X .

Ilmll=l

Let E(f) denote the set of extreme points of f - B(f),

E(f) = {x E X: If(x) - B(f)(x)1 = II f - B(f)ll}

(2.1 )

and let E+(f)(E-(f)) denote the positive (resp. negative) extreme points
where (f - B(f»)(x) has value II f - B(f)11 (resp. -II f - B(f)II)· Let lEI
denote the cardinality of the set E and if S <;; C(X), the set of extreme point
sets E(S) is defined by

E(S) = {E(f):fES}.

DEFINITION. Let S = Uk} be a sequence of functions in C(X). A point
X E X is called a + limit extremal of S if for each k there exists x: E E+ (fk)
such that limk _ 00 x: = x. A -limit extremal is defined similarly. A point
x E X is a ± limit extremal of S if for each k there exist x-: E E+ (fk) and
xi: EE-(fd such that limk _ oo x: =limk _ oo xi: =X.

In example (1.1) the point x = 3/4 was a ±limit extremal.
All reference to the convergence of subsets of X refers to convergence of

sets in the compact metric space consisting of the nonempty, closed subsets
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of X with the Hausdorff metric. For subsets A, B £; X the Hausdorff metric
d(A, B) is defined by

d(A, B) = max{sup inf p(a, b), sup inf p(a, b)}.
aeA beB beB aeA

When a sequence {E(fk)} of extreme point sets converges to a set EO it
follows that EO is a maximal cluster point of the sequence.

DEFINITION. Let S = Uk} be a sequence of functions in C(X) such that
{E(fk)} ~ EO. Then EO is said to contain a limit critical point set if it
contains n + 1 distinct limit extremals XI' •.. , X n + 1 and for each k there is a
critical point set {XI (k), ..., x n + 1(k)} for fk such that

lim xi(k) = Xi'
k -+ 00

i = 1, ..., n + 1.

If X = [a, b] then the critical point sets are alternation sets and limit
critical point sets will be called limit alternation sets.

3. RESULTS IN C(X)

The hypothesis of Theorem 1 that lim k -+ 00 sep Ek =°implies that there
is a limit critical point set of cardinality less than or equal to n. A small
cardinality for EO by itself is enough to guarantee the nonexistence of
uniform strong unicity.

THEOREM 3. If S= Uk} is a sequence in C(X)\M, {E(fk)} ~Eo, and
IEol ~ n - 1, then S does not have a uniform strong unicity constant.

Proof By interpolation there exists a function p E M with Ilpll = 1 and
p =°on EO. Given e > 0 let N be a neighborhood of EO such that Ip(x)1 < e
if XEN. For k sufficiently large, E(fk)£;N and by (2.1)

')I(fd ~ max sgn(fk - B(fk»(X) p(x) ~ sup Ip(x)1 ~ e.
xEE(fk) XEN

Since this was for any e > 0, the proof is complete.

THEOREM 4. If S= Ud is a sequence in C(X)\M, {E(fk)} ~Eo,
IEol = n, and not every point of EO is a ± limit extremal of S, then S does
not have a uniform strong unicity constant.

Proof Fix a point x E EO where x is not a ± limit extremal of S. Let U
be a neighborhood of x and Uk} be a subsequence (renamed Uk}) such
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that UnE-(fk)=0 for all k (the case UnE+(fk)=0 is similar). Let
p E M satisfy Ilpll = 1, p 7" 0 on EO\ {x}, and p(x) < O. Reduce U so that
p<O on U. For any 1'>0, let N be a neighborhood of EO\ {x} on which
Ip I~ e. Applying (2.1) we are done.

THEOREM 5. If S= Ud is a sequence in C(X)\M, {E(fd} --.Eo, and
EO contains n ± limit extremals of S, then S has a uniform strong unicity
constant.

Proof Suppose to the contrary that inf y(fd = 0 and let Ud be a sub­
sequence (renamed Uk}) such that limk --> 00 y(fd = O. We can assume
without loss of generality that B(fd = 0 and II fkll = 1 for each k. We still
have {E(fk)} --. EO. Since by (1.1)

lim y(fk) = lim inf max fdx) m(x) = 0,
k--> ex; k--> ex; IImll ~ 1 XEE(fkl

for any k there exists a function mk E M such that (relabeling if necessary
and using a subsequence of {fd if necessary)

max fdx) mk(x) ~ 11k
xEE(fk)

with Ilmkll = 1. Fix Xj' a ±limit extremal in EO, and let xj! EE+(fd and
xJic E E- (fd satisfy

lim x j ! = x j = lim x jk •.
k--+oo k-+oo

Then mk(xj!) ~ 11k and -11k ~ mk(xjk ). Since {mk} is a uniformly boun­
ded sequence in M, there exists mE M such that {mk} (using a subsequence
and relabeling if necessary) converges to m with Ilmil = 1. Since the set
{mk} is uniformly equicontinuous,

lim mk(xj!) =m(x) = lim mk(xjk ).
k-oo k-+oo

Thus m(xJ = O. Hence m has at least n zeros since there are at least n
±limit extremals. Thus m=0 which contradicts IImll = 1 and the proof is
complete.

Remark. Theorem 5 shows that the example in (1.1) has a uniform
strong unicity constant since n = 2 and i and ~ are ± limit extremals.

THEOREM 6. If S= Ud is a sequence in C(X)\M, {E(fk)} --.Eo, and
EO contains a limit critical point set, then S has a uniform strong unicity
constant.
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Proof Suppose to the contrary that infkyUk) = O. Let Ud be a sub­
sequence (renamed Ud) such that limk~ 00 yUd =0 and assume without
loss of generality that II fkll = 1 and BUd = 0 for each k = 1, '" .

Let {x l' ..., X n + I} be a limit critical point set in EO with separation '1 > 0
and let {x~k), ..., Xn I} = AUk) be a critical point set for fk for each k,
where limk~ 00 xlk

) = Xi' i = 1, ..., n+ 1.
Then for k large enough sep A(fk) ~ '1/2 > 0 and thus by Theorem 2 we

are led to a contradiction and the proof is complete.

3. RESULTS IN C[a, b]

For the remainder of the paper X = [a, b].

THEOREM 7. If S=Ud is a sequence in C[a,b]\M, {EUd}--+Eo,
IEol ~ n + 1, and EO does not contain a limit alternation set for any
subsequence of S, then S does not have a uniform strong unicity constant.

Proof By extraction of subsequences and relabeling, we may assume
that EO contains r ±limit extremals of Ud, Yl < ." < Yn and no other
point of EO is a ± limit extremal of a subsequence of Ud. By IEO\ ~ n + 1,
r :::; n - 1. Let e> O. By the uniform equicontinuity of the unit ball of M,
there exists (j > 0 such that p EM, II pll = 1, and Ix - yl :::; (j implies
Ip(x) - p(y)\ :::; e. We shall select a sign u = ±1, a subsequence relabeled
Ud, and s points Z 1 < ... < Zs' in [a, b] with s:::; n - 1 satisfying

(i) X E [a, Z 1 - (j] n EUd,

(ii) x E [Zi+ (j, Zi+ 1 - (j] n E(fd,

(iii) XE [zs+(j, b] nEUd,

Ufk(X) > 0

(_l)i Ulk(X) U= 1, ..., s-l)

( - 1Y Ufk(X) > O.

Once we have accomplished this, Theorem 5.2 in [7] yields p E M
with Ilpll=1 where up:::;O on [a,zl]' (_l)iUp:::;O on [Z;,Zi+l]
(i = 1, ... , s - 1), and ( -1 Y up:::; 0 on [z" b]. By (2.1) we would then have
yUk):::; e for all k.

Choose the first interval [a, Yl), (Yl' Y2), ..., (Yn b] that contains a point
of EO. Since r:::; n - 1, one indeed exists. Suppose that (Yj' Yj+ d is the first
such interval. (There is virtually no difference in the consideration when
[a, yd or (Yn b] is the first such interval). Let Zl = Yl' ..., Zj= Yj' Choose a
subsequence and relabel so that EUk) n [a, yJ S Uf= l(Yi - (j, Yi + (j) for
all k. If (Yj' Yj + (j) n EO #- 0 choose x in this set. Otherwise, let x be the
smallest element of (Yj' b] n EO. Either way, choose a subsequence of Uk}
so that (for instance) x is s + limit extremal of Uk}' Observe that x is not
a -limit extremal of any subsequence of {/d. Now let Zj+ 1 be the smallest
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element of [x, b] that is a -limit extremal of a subsequence of Ud. If no
such Zj + 1 exists, then we can choose a subsequence and relabel so that
fk > 0 on [x, b] n E(fd for all k and the construction would be complete.
If Zj+ 1 does exist, choose a subsequence and relabel so that Zj+ 1 is a
-limit extremal of Ud. We may further choose a subsequence and relabel
so thatfk > 0 on [Zj+ £5, Zj+ 1 - £5] n E(fk) for all k. Now choose Zj+2 to be
the smallest element of [Zj + l' b] which is a +limit extremal of a sub­
sequence of Uk}' If none exists, we would be done as above. Otherwise,
perform the same extractions as above. We continue in this fashion alter­
nating signs. The process must terminate with s ~ n - 1; for otherwise,
Z 1 < .. , < Zj < x < Zj + 1 < ... < Z n would constitute a limit alternation set
for a subsequence of the original S.

We summarize the previous results now in Theorem 8 which completely
characterizes the sets S £; C[a, b] which have uniform strong unicity con­
stants. It should be observed that since y(m) = 1 for each mE M, a set
S £; C(X) fails to have a uniform strong unicity constant precisely when
S\ M does. Also for any mE M, E(m) =X and thus the sets EO of the next
theorem must arise from functions not in M. Thus the next theorem could
be stated for S£;C[a,b] rather than for S£;C[a,b]\M.

THEOREM 8. A set S £; C[a, b] \ M does not have a uniform strong
unicity constant if and only if S contains a sequence Uk} with {E(fk)} -+ EO
where one of the following holds:

(i) IEol ~n-l,
(ii) lEO 1 = n and EO contains a point which is not a ±limit extremal

of Ud,
(iii) IEol ~ n + 1 and EO does not contain a limit alternation set for

any subsequence of Uk}'

Proof Theorems 3, 4, and 7 show that anyone of the above conditions
gives a nonuniform strong unicity constant. If S does not have a uniform
strong unicity constant, i.e., inffe s y(f) = 0, then there exists a sequence
Ud in S such that limk~ 00 y(fk) =O. Then there will be a subsequence
(renamed {E(fk)}) of {E(fd} which converges to a set EO. If none of the
above three conditions held then Theorem 5 and 6 would ensure that Uk}
had a uniform strong unicity constant.

Remark. The result of Henry and Schmidt [5] and Paur and Roulier
[10] follows from Theorem 6 for if there is some sequence Ud, fk E S £;

C[a, b], S n M = 0, and S compact, then they showed that any cluster
point of E(fk) contains an alternation set. Cline's result [3] for all of
C[a, b] follows from Theorem 3 by considering a sequence of functions
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{fd, fk E CEO, 1J, such that all the extreme points E(fd £; [112 - 11k,
1/2 + 11kJ and thus the only cluster point of E(fk) would be EO = {1/2}.
Bartelt's result [1 J for X finite follows immediately from Theorem 2.

4. A CLASS OF RATIONAL FUNCTIONS

In [11 J, T. J. Rivlin studied a set of rational functions

S = {f( t, x): 0 < t < I} £; C[ - 1, 1J,

where a and b are integers, a> 0, b ~ 0, nk = ak + b, k = 1, ..., and Tk is the
kth degree Chebyshev polynomial

00

f(t, x) = I. tkTnJx).
k~O

By applying Theorem 4 in the special case b = 0 and Theorem 7 in case
b -=/: 0 we prove:

THEOREM 9. Let S be the set of rational functions above, and
approximate from nn the polynomials of degree ~n, for any n ~ a + b with
n > 1. Then S does not have a uniform strong unicity constant.

For the proof we need the results from [l1J,

f(t, x)
Tb(x) - tT1a_bl(X).

1+ t2 - 2tTa(x) ,

for j = nk, nk + 1, ..., nK + 1 - 1 the best jth degree polynomial approximate
for f on [ - 1, 1J is

k ~+2

Bak+b(X) = I~O tITal+b(X) + 1- t2 Tak+b(X);

the error function

ejf(x)=f(t, x)-Bak+b(X)

tk + 1 A(O)

= 1- t2 B(O)'

where A(O)/B(O)=cosnk(O+I/J) and where x=cosO,
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). -2t + (1 + t 2
) cos(a8)

cos 'I' = --~--..:..._...;,-...:..

. 1+ t 2
- 2t cos(a8)

')' (l-t 2 )sin(a8)
SIn 'I' = -:-----:;----:,.----:~

1+ t 2
- 2t cos(a8)'

and A(8)1B(8) = ±1 alternately at nk + 1 + 1 points.
From [6] we know that these nk + 1 + 1 points are X o= 1, x nk + 1== 1, and

the nk + 1 -1 roots of

and we know

Now it is easy to check that sgn eif)( 1) = 1,

and

sgn eif)(x;) = (-1) +i, i = 0, ..., nk + l'

and thus considering Xi as a function of t, 0 < t < 1,

dXi 2aT~k(x;)[1 + t 2
- 2tTa(x;)] [xf - 1]

dt (1- t 2
)( -1 )+i ank[nk(1 + t 2

- 2tTa(x;) +a(l- t 2
)]'

(4.1 )

Also g(O, x) = aT~Jx) Ta(x) + nkTnJX) T~(x) = ankink+ 1 T~k+l(X) and
g(l, x) = 2aT~k(x)[Ta(x) - 1].

Since the roots of g(x, t) are continuous functions of t, we have xi(O) = Zi
where T~k+JZ;)=O while xi(l) is a root of g(l, x).

Since Ta(x) -1 has [aI2] + 1 roots (always including 1 and including
-1 if a is even) g(l, x) has at most nk + [aI2] distinct roots in [ -1,1]. So
as t varies from 0 to 1, the nk + 1 + 1 extreme points of ej(f) coalesce into at
most nk + [aI2] points.

Proof of Theorem. Assume first that b # 0 and that Ta(x) - 1, T~k(X),

and T~k+I(X) have no roots in common. Let

- 1 < z(nK + I - 1) < ... < Z 1 < 1
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be the roots of T~k+l(X) where

313

z( i) = cos( in/n k + 1),

and let

i=I, ...,nk+I- I

w(nk - 1) < ... < w( 1)

be the roots of T~k where

w(i) = cos(in/nk),

and let

i= 1, ..., nk-I,

q([~J)<'" <a(I)<q(O)=I

be the roots of Ta(x) - 1 where

q(i) = cos(2in/a),

and let

be the roots of Ta(x) + 1 where

A(j)=cos((2j-l)n/a,

Then from [6] in this setting we know

i=O, ...,[~J

j=I, ...,[a;IJ

where M n= llYn and Yn is the strong unicity constant when approximating
from IIn' Thus it suffices to show

sup Mnk(f(t, x)) = 00.
0<1< ,

Let - 1 < u(a-I) < ... < u( 1) < 1 be the interior extreme points of
Ta ( x). So u(l), u( 3), ... etc., are the A(i) and u(2), u(4), ... are the q( i) (u( i) =
cos(in/a), i= 1, ..., a-I). Let I, be the largest integer such that Idnk+! <
I/a, 12 the largest integer such that (/, + I2 )/nk+, < 2/a, ..., and la_I the
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largest integer such that 'Lf::/ /;/nk+1 < (a - 1)/a. This leads to the
following ordering of the zeros under consideration:

1>Zl > WI > ... > W(ll -1) >z(ld> u(l»z(ll + 1» w(ld

> >w(lI+I2 -2»z(II+I2»u(2»z(II+I2 +1»w(II+I2 -1)

> > W(ll + ... + Ii - i) > Z(ll + ... + I;) > u(i) > Z(ll + ... + Ii + 1)

> W(ll + +I;-i+l» ... >W(ll+'" +Ia_,-(a-l))

>Z(ll + +Ia-d

> u(a - 1) > A(ll + ... + Ia_1+ 1)

>W(ll + ... +Ia_I-(a-l)+ 1» ...

> z(nk+1- 2) > w(nk -1) >z(nk+1 -1) > -1.

To verify the ordering observe that by the definition of II we have

Thus

Thus

and II < K + 1 + b/a < II + 1.

hence

hence

hence

hence

I,a-ak-a-b <0,

W(II - 1) > z(ld.

On the other hand

II >k+b/a,
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hence

hence

hence
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The verification of the rest of the ordering can be done in a similar way
using induction.

Let x( 1), ..., x(nk +! - 1) be the interior extreme points of eif)(x)

-l<x(nk+!-l)< ... <x(l)<1.

Then the Xi fit into the previous ordering as follows,

1>x(l»z(1), w(1»x(2»z(2),

x(I! -1) >z(I! -1) > w(I! -1) >x(I!) > z(I!),

and

z(/! + '" +12j ) > x(I! + +12j ) > u(2j) > x(I! + ... +12j +d
>z(I! + +/2j +d>w(I! + '" +/2j -2j+ 1)

>x(I!+ +/2j +d>··· (4.2)

This follows easily from (4.1). Furthermore as t ~ 1

x(l) ~ 1,

x(I! + 1)~ w(Id, ...,

x(2) ~ w(l), ..., x(I!) ~ w(I! - 1)

x(I! +12 - 1) ~ w(I! +12 - 2), x(I! +12 ) ~ u(2)

x(I! + 12 + 1) ~ u(2), etc.

Thus note that no w(i) is a ± limit extremal.
Let A(t) be an alternant for f(t, x). Suppose for some j that A(t)

contains x(I! + ... +12j ) and x(I! + ... +12J+ d. Then as t ~ 1, both
x(I! + ... + 12;) and x(I! + ... + 12j + 1) tend to u(2j). Thus A( 1) has car­
dinality at most nk + 1 and thus it is not a limit alternation set.
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Now suppose that the above does not happen for any j. Then we have
the following three possibilities:

(i) A(t) contains x(l! + ... + 12j ) but not xU! + ... + 12j + 1). In
this case, to preserve alternation, A(t) cannot contain xU! + ... +12j +2).

(ii) A(t) contains XUl + + 12j+ !) but not xU! + .. , +12), Then
A(t) does not contain xU! + +12j - 1).

(iii) A(t) contains neither xU! + ... +12) nor xU! + .. , + 12j + 1).

In any case, for each u(2j), A(t) does not contain two of the x(j). Since
there are [a/2] -1 of the u(2j)'s if a is even ([a/2] if a is odd), there are
a - 2 of the interior x(i) that are omitted from A (t) if a is even (a - 1 if a is
odd). Thus A(t) contains only nk+! - 1- (a - 2) = nk+ 1 interior points if
a is even (nk if a is odd). Furthermore A(t) must include x(l) and
x(nk+ 1 -1). Thus for A(t) to be an alternant if a is even, A(t) must include
either 1 or -1. But as t -+ 1, Xl -+ 1 and x(n k + 1 -1) -+ -1. So A(I) has
cardinality at most nk + 1. If a is odd, A(t) must include both 1 and -1
and again A(I) has cardinality at most nk+ 1.

In either case A (1) is not a limit alternation set and consequently EO
does not contain a limit alternation set and the result follows from
Theorem 7.

Now if b i= 0 and Ta(x) -1, T~k(X), and T~k+l(X) do have some roots in
common, the argument is similar to the preceding case and uses the fact
that if x is a common root of T~k and Ta(x) -1, then x is also a root of
T;'k+l and if Z is the root of T~k+l closest to x then z -+ x as t -+ 1. Also in
(4.2) some of the strict inequalities > become ~.

Finally if b = 0, then all the interior roots of Ta(x) -1 are roots of
T~k(X) = T~k(X). Thus g(l, x) has only nk - 1 interior roots and EO has
cardinality nk+ 1. Since no root f T~k(X) that is not a root of Ta(x) - 1 can
be a ± limit extremal the result follows from Theorem 4.
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