JOURNAL OF APPROXIMATION THEORY 55, 304-317 (1988)

Uniform Strong Unicity Constants for Subsets of C(X)

MARTIN BARTELT

Department of Mathematics, Christopher Newport College, Newport News, Virginia 23606, U.S.A.

AND

JOHN SWETITS

Department of Mathematical Sciences, Old Dominion University, Norfolk, Virginia 23508, U.S.A.

Communicated by Frank Deutsch

Received February 7, 1986; accepted December 22, 1986

1. INTRODUCTION

Let C(X) denote the set of continuous real-valued functions on the compact metric space X with metric ρ . Let M be a Haar subspace of dimension n in C(X) and, for a given $f \in C(X)$, let B(f) or $B_M(f)$ denote the best uniform approximation to f from M. D. J. Newman and H. S. Shapiro [9] showed the existence of a constant c > 0 such that

 $||f - m|| \ge ||f - B(f)|| + c ||B(f) - m||$ for all $m \in M$.

The strong unicity constant $\gamma(f)$ is the largest such constant c and $0 < \gamma(f) \le 1$.

This paper studies the existence of uniform strong unicity constants $\gamma > 0$ for subsets of C(X). Cline [3] showed that there is no uniform strong unicity constant for all of C(X) for X infinite and n > 1. Bartelt [1] showed that if X is finite then there is a uniform strong unicity constant for all of C(X), and therefore we assume henceforth that X is infinite. It is known [5, 8, 10] that if the compact set $S \subseteq C[a, b]$ satisfies $S \cap M = \emptyset$, then S has a uniform strong unicity constant. As observed in [4], C(X) has a uniform strong unicity constant when dim M = 1.

Results on uniform unicity constants in [4] include the following

theorem which uses the idea of separation of a set. If $T \subseteq X$, then the separation of T is defined by

$$\sup T = \inf \{ \rho(x, y) \colon x, y \in T, x \neq y \}.$$

THEOREM 1 (Dunham). Let f_k , k = 1, ..., be a sequence of functions in <math>C[a, b] such that the set of extreme points, E_k , of $f_k - B(f_k)$, k = 1, ..., consists of precisely <math>n + 1 points for each $k = 1, ..., and \lim_{k \to \infty} sep E_k = 0$. Then $\lim_{k \to \infty} \gamma(f_k) = 0$, i.e., the set $\{f_k: k = 1, ...\}$ does not have a uniform strong unicity constant.

All of the above results give just necessary or just sufficient conditions for the existence of a uniform strong unicity constant. Also, in Theorem 1, the conclusion need not follow without the assumption that each E_k is of minimal cardinality. For example on [0, 1] with $M = \pi$, polynomials of degree one or less, and for each k = 1, 2, ..., if $f_k(x)$ is the piecewise linear function defined by

$$f_k(x) = \begin{cases} -1 & \text{if } x = 1/3 - 1/k, 2/3 - 1/k \\ 0 & \text{if } x = 0, 1 \\ +1 & \text{if } x = 1/3 + 1/k, 2/3 + 1/k \end{cases}$$
(1.1)

then the set of functions $\{f_k\}$ has a uniform strong unicity constant even though $\lim_{k\to\infty} \sup E_k = 0$. If in the same setting f_k is the piecewise linear function defined by

$$f_k(x) = \begin{cases} -1 & \text{if } x = 3/4 - 1/k \\ 0 & \text{if } x = 0, 3/8, 1 \\ +1 & \text{if } x = 1/4, 1/2, 3/4 + 1/k \end{cases}$$
(1.2)

then $\lim_{k\to\infty} \sup E_k = 0$ and the set $\{f_k\}$ does not have a uniform strong unicity constant. Both examples can be verified by using the characterization of strong unicity constants in (2.1).

The results in this paper completely determine (see Theorem 8) whether a given set $S \subseteq C[a, b]$ has a uniform strong unicity constant by using the notion of limit extremals. Moreover only Theorems 7 and 8 assume X is an interval. The paper's results contain all the above mentioned previous results on the problem of uniform strong unicity constants. In Section 4 the paper's results are used to show that the class of rational functions studied by Rivlin does not have a uniform strong unicity constant.

BARTELT AND SWETITS

2. PRELIMINARIES

For $f \in C(X)$, X compact metric, and M a Haar subspace of dimension n > 1, a critical point set is a set of n + 1 points $x_1, ..., x_{n+1}$ such that there exist signs $\sigma_1, ..., \sigma_{n+1}$ and numbers $\theta_1, ..., \theta_{n+1}$, $\theta_i > 0$, such that $(f - B(f))(x_i) = \sigma_i || f - B(f) ||, i = 1, ..., n + 1$, and for each j = 1, ..., n,

$$0 = \sum_{i=1}^{n+1} \theta_i \sigma_i m_j(x_i).$$

Let F_{δ} denote the set of functions $f \in C(X)$ such that each f has a critical point set with separation $\geq \delta$. Then Dunham [4] proved the following results for X = [a, b], and the result, with essentially the same proof, holds for any compact metric space X.

THEOREM 2 (Dunham). Let M be a Haar set of dimension n in C(X), X compact metric. Then F_{δ} has a uniform strong unicity constant.

The following characterization of $\gamma(f)$ from [2] will be used:

$$\gamma(f) = \inf_{\substack{m \in M \\ \|m\| = 1}} \max_{x \in E(f)} \frac{f(x) - B(f)(x)}{\|f - B(f)\|} m(x).$$
(2.1)

Let E(f) denote the set of extreme points of f - B(f),

$$E(f) = \{x \in X: |f(x) - B(f)(x)| = ||f - B(f)||\}$$

and let $E^+(f)(E^-(f))$ denote the positive (resp. negative) extreme points where (f - B(f))(x) has value ||f - B(f)|| (resp. -||f - B(f)||). Let |E|denote the cardinality of the set E and if $S \subseteq C(X)$, the set of extreme point sets E(S) is defined by

$$E(S) = \{ E(f) \colon f \in S \}.$$

DEFINITION. Let $S = \{f_k\}$ be a sequence of functions in C(X). A point $x \in X$ is called a + *limit extremal* of S if for each k there exists $x_k^+ \in E^+(f_k)$ such that $\lim_{k \to \infty} x_k^+ = x$. A - *limit extremal* is defined similarly. A point $x \in X$ is a $\pm limit$ extremal of S if for each k there exist $x_k^+ \in E^+(f_k)$ and $x_k^- \in E^-(f_k)$ such that $\lim_{k \to \infty} x_k^+ = \lim_{k \to \infty} x_k^- = x$.

In example (1.1) the point x = 3/4 was a \pm limit extremal.

All reference to the convergence of subsets of X refers to convergence of sets in the compact metric space consisting of the nonempty, closed subsets

of X with the Hausdorff metric. For subsets A, $B \subseteq X$ the Hausdorff metric d(A, B) is defined by

$$d(A, B) = \max\{\sup_{a \in A} \inf_{b \in B} \rho(a, b), \sup_{b \in B} \inf_{a \in A} \rho(a, b)\}.$$

When a sequence $\{E(f_k)\}$ of extreme point sets converges to a set E^0 it follows that E^0 is a maximal cluster point of the sequence.

DEFINITION. Let $S = \{f_k\}$ be a sequence of functions in C(X) such that $\{E(f_k)\} \to E^0$. Then E^0 is said to contain a *limit critical point set* if it contains n + 1 distinct limit extremals $x_1, ..., x_{n+1}$ and for each k there is a critical point set $\{x_1(k), ..., x_{n+1}(k)\}$ for f_k such that

$$\lim_{k \to \infty} x_i(k) = x_i, \qquad i = 1, ..., n + 1.$$

If X = [a, b] then the critical point sets are alternation sets and limit critical point sets will be called *limit alternation sets*.

3. RESULTS IN C(X)

The hypothesis of Theorem 1 that $\lim_{k \to \infty} \sup E_k = 0$ implies that there is a limit critical point set of cardinality less than or equal to *n*. A small cardinality for E^0 by itself is enough to guarantee the nonexistence of uniform strong unicity.

THEOREM 3. If $S = \{f_k\}$ is a sequence in $C(X) \setminus M$, $\{E(f_k)\} \to E^0$, and $|E^0| \leq n-1$, then S does not have a uniform strong unicity constant.

Proof. By interpolation there exists a function $p \in M$ with ||p|| = 1 and p = 0 on E^0 . Given $\varepsilon > 0$ let N be a neighborhood of E^0 such that $|p(x)| < \varepsilon$ if $x \in N$. For k sufficiently large, $E(f_k) \subseteq N$ and by (2.1)

$$\gamma(f_k) \leq \max_{x \in E(f_k)} \operatorname{sgn}(f_k - B(f_k))(x) \ p(x) \leq \sup_{x \in N} |p(x)| \leq \varepsilon.$$

Since this was for any $\varepsilon > 0$, the proof is complete.

THEOREM 4. If $S = \{f_k\}$ is a sequence in $C(X) \setminus M$, $\{E(f_k)\} \to E^0$, $|E^0| = n$, and not every point of E^0 is a \pm limit extremal of S, then S does not have a uniform strong unicity constant.

Proof. Fix a point $x \in E^0$ where x is not a \pm limit extremal of S. Let U be a neighborhood of x and $\{f_k\}$ be a subsequence (renamed $\{f_k\}$) such

that $U \cap E^-(f_k) = \emptyset$ for all k (the case $U \cap E^+(f_k) = \emptyset$ is similar). Let $p \in M$ satisfy ||p|| = 1, p = 0 on $E^0 \setminus \{x\}$, and p(x) < 0. Reduce U so that p < 0 on U. For any $\varepsilon > 0$, let N be a neighborhood of $E^0 \setminus \{x\}$ on which $|p| \leq \varepsilon$. Applying (2.1) we are done.

THEOREM 5. If $S = \{f_k\}$ is a sequence in $C(X) \setminus M$, $\{E(f_k)\} \to E^0$, and E^0 contains $n \pm limit$ extremals of S, then S has a uniform strong unicity constant.

Proof. Suppose to the contrary that $\inf \gamma(f_k) = 0$ and let $\{f_k\}$ be a subsequence (renamed $\{f_k\}$) such that $\lim_{k \to \infty} \gamma(f_k) = 0$. We can assume without loss of generality that $B(f_k) = 0$ and $||f_k|| = 1$ for each k. We still have $\{E(f_k)\} \to E^0$. Since by (1.1)

$$\lim_{k \to \infty} \gamma(f_k) = \lim_{k \to \infty} \inf_{\|m\| = 1} \max_{x \in E(f_k)} f_k(x) m(x) = 0,$$

for any k there exists a function $m_k \in M$ such that (relabeling if necessary and using a subsequence of $\{f_k\}$ if necessary)

$$\max_{x \in E(f_k)} f_k(x) m_k(x) \leq 1/k$$

with $||m_k|| = 1$. Fix x_j , a \pm limit extremal in E^0 , and let $x_{jk}^+ \in E^+(f_k)$ and $x_{ik}^- \in E^-(f_k)$ satisfy

$$\lim_{k \to \infty} x_{jk}^+ = x_j = \lim_{k \to \infty} x_{jk}^-.$$

Then $m_k(x_{jk}^+) \leq 1/k$ and $-1/k \leq m_k(x_{jk}^-)$. Since $\{m_k\}$ is a uniformly bounded sequence in M, there exists $\bar{m} \in M$ such that $\{m_k\}$ (using a subsequence and relabeling if necessary) converges to \bar{m} with $\|\bar{m}\| = 1$. Since the set $\{m_k\}$ is uniformly equicontinuous,

$$\lim_{k\to\infty}m_k(x_{jk}^+)=\bar{m}(x_j)=\lim_{k\to\infty}m_k(x_{jk}^-).$$

Thus $\bar{m}(x_j) = 0$. Hence \bar{m} has at least *n* zeros since there are at least *n* \pm limit extremals. Thus $\bar{m} = 0$ which contradicts $||\bar{m}|| = 1$ and the proof is complete.

Remark. Theorem 5 shows that the example in (1.1) has a uniform strong unicity constant since n = 2 and $\frac{1}{3}$ and $\frac{2}{3}$ are \pm limit extremals.

THEOREM 6. If $S = \{f_k\}$ is a sequence in $C(X) \setminus M$, $\{E(f_k)\} \to E^0$, and E^0 contains a limit critical point set, then S has a uniform strong unicity constant.

Proof. Suppose to the contrary that $\inf_k \gamma(f_k) = 0$. Let $\{f_k\}$ be a subsequence (renamed $\{f_k\}$) such that $\lim_{k \to \infty} \gamma(f_k) = 0$ and assume without loss of generality that $||f_k|| = 1$ and $B(f_k) = 0$ for each k = 1,

Let $\{x_1, ..., x_{n+1}\}$ be a limit critical point set in E^0 with separation $\eta > 0$ and let $\{x_1^{(k)}, ..., x_{n+1}^{(k)}\} = A(f_k)$ be a critical point set for f_k for each k, where $\lim_{k \to \infty} x_i^{(k)} = x_i$, i = 1, ..., n + 1.

Then for k large enough sep $A(f_k) \ge \eta/2 > 0$ and thus by Theorem 2 we are led to a contradiction and the proof is complete.

3. RESULTS IN C[a, b]

For the remainder of the paper X = [a, b].

THEOREM 7. If $S = \{f_k\}$ is a sequence in $C[a, b] \setminus M$, $\{E(f_k)\} \to E^0$, $|E^0| \ge n + 1$, and E^0 does not contain a limit alternation set for any subsequence of S, then S does not have a uniform strong unicity constant.

Proof. By extraction of subsequences and relabeling, we may assume that E° contains $r \pm \text{limit}$ extremals of $\{f_k\}$, $y_1 < \cdots < y_r$, and no other point of E° is a $\pm \text{limit}$ extremal of a subsequence of $\{f_k\}$. By $|E^{\circ}| \ge n+1$, $r \le n-1$. Let $\varepsilon > 0$. By the uniform equicontinuity of the unit ball of M, there exists $\delta > 0$ such that $p \in M$, ||p|| = 1, and $|x - y| \le \delta$ implies $|p(x) - p(y)| \le \varepsilon$. We shall select a sign $\sigma = \pm 1$, a subsequence relabeled $\{f_k\}$, and s points $z_1 < \cdots < z_s$, in [a, b] with $s \le n-1$ satisfying

(i)	$x \in [a, z_1 - \delta] \cap E(f_k),$	$\sigma f_k(x) > 0$
(ii)	$x \in [z_i + \delta, z_{i+1} - \delta] \cap E(f_k),$	$(-1)^i \sigma f_k(x) \ (i=1,,s-1)$
(iii)	$x \in [z_s + \delta, b] \cap E(f_k),$	$(-1)^s \sigma f_k(x) > 0.$

Once we have accomplished this, Theorem 5.2 in [7] yields $p \in M$ with ||p|| = 1 where $\sigma p \leq 0$ on $[a, z_1]$, $(-1)^i \sigma p \leq 0$ on $[z_i, z_{i+1}]$ (i = 1, ..., s - 1), and $(-1)^s \sigma p \leq 0$ on $[z_s, b]$. By (2.1) we would then have $\gamma(f_k) \leq \varepsilon$ for all k.

Choose the first interval $[a, y_1)$, (y_1, y_2) , ..., $(y_r, b]$ that contains a point of E^0 . Since $r \le n-1$, one indeed exists. Suppose that (y_j, y_{j+1}) is the first such interval. (There is virtually no difference in the consideration when $[a, y_1)$ or $(y_r, b]$ is the first such interval). Let $z_1 = y_1, ..., z_j = y_j$. Choose a subsequence and relabel so that $E(f_k) \cap [a, y_j] \subseteq \bigcup_{i=1}^j (y_i - \delta, y_i + \delta)$ for all k. If $(y_j, y_j + \delta) \cap E^0 \ne \emptyset$ choose x in this set. Otherwise, let x be the smallest element of $(y_j, b] \cap E^0$. Either way, choose a subsequence of $\{f_k\}$ so that (for instance) x is s + limit extremal of $\{f_k\}$. Observe that x is not a -limit extremal of any subsequence of $\{f_k\}$. Now let z_{j+1} be the smallest element of [x, b] that is a -limit extremal of a subsequence of $\{f_k\}$. If no such z_{j+1} exists, then we can choose a subsequence and relabel so that $f_k > 0$ on $[x, b] \cap E(f_k)$ for all k and the construction would be complete. If z_{j+1} does exist, choose a subsequence and relabel so that z_{j+1} is a -limit extremal of $\{f_k\}$. We may further choose a subsequence and relabel so that $f_k > 0$ on $[z_j + \delta, z_{j+1} - \delta] \cap E(f_k)$ for all k. Now choose z_{j+2} to be the smallest element of $[z_{j+1}, b]$ which is a +limit extremal of a subsequence of $\{f_k\}$. If none exists, we would be done as above. Otherwise, perform the same extractions as above. We continue in this fashion alternating signs. The process must terminate with $s \leq n-1$; for otherwise, $z_1 < \cdots < z_j < x < z_{j+1} < \cdots < z_n$ would constitute a limit alternation set for a subsequence of the original S.

We summarize the previous results now in Theorem 8 which completely characterizes the sets $S \subseteq C[a, b]$ which have uniform strong unicity constants. It should be observed that since $\gamma(m) = 1$ for each $m \in M$, a set $S \subseteq C(X)$ fails to have a uniform strong unicity constant precisely when $S \setminus M$ does. Also for any $m \in M$, E(m) = X and thus the sets E^0 of the next theorem must arise from functions not in M. Thus the next theorem could be stated for $S \subseteq C[a, b]$ rather than for $S \subseteq C[a, b] \setminus M$.

THEOREM 8. A set $S \subseteq C[a, b] \setminus M$ does not have a uniform strong unicity constant if and only if S contains a sequence $\{f_k\}$ with $\{E(f_k)\} \to E^0$ where one of the following holds:

(i) $|E^0| \leq n-1$,

(ii) $|E^0| = n$ and E^0 contains a point which is not a $\pm limit$ extremal of $\{f_k\}$,

(iii) $|E^0| \ge n+1$ and E^0 does not contain a limit alternation set for any subsequence of $\{f_k\}$.

Proof. Theorems 3, 4, and 7 show that any one of the above conditions gives a nonuniform strong unicity constant. If S does not have a uniform strong unicity constant, i.e., $\inf_{f \in S} \gamma(f) = 0$, then there exists a sequence $\{f_k\}$ in S such that $\lim_{k \to \infty} \gamma(f_k) = 0$. Then there will be a subsequence (renamed $\{E(f_k)\}$) of $\{E(f_k)\}$ which converges to a set E^0 . If none of the above three conditions held then Theorem 5 and 6 would ensure that $\{f_k\}$ had a uniform strong unicity constant.

Remark. The result of Henry and Schmidt [5] and Paur and Roulier [10] follows from Theorem 6 for if there is some sequence $\{f_k\}, f_k \in S \subseteq C[a, b], S \cap M = \emptyset$, and S compact, then they showed that any cluster point of $E(f_k)$ contains an alternation set. Cline's result [3] for all of C[a, b] follows from Theorem 3 by considering a sequence of functions

 $\{f_k\}, f_k \in C[0, 1]$, such that all the extreme points $E(f_k) \subseteq [1/2 - 1/k, 1/2 + 1/k]$ and thus the only cluster point of $E(f_k)$ would be $E^0 = \{1/2\}$. Bartelt's result [1] for X finite follows immediately from Theorem 2.

4. A CLASS OF RATIONAL FUNCTIONS

In [11], T. J. Rivlin studied a set of rational functions

$$S = \{f(t, x): 0 < t < 1\} \subseteq C[-1, 1],$$

where a and b are integers, a > 0, $b \ge 0$, $n_k = ak + b$, k = 1, ..., and T_k is the kth degree Chebyshev polynomial

$$f(t, x) = \sum_{k=0}^{\infty} t^k T_{n_k}(x).$$

By applying Theorem 4 in the special case b = 0 and Theorem 7 in case $b \neq 0$ we prove:

THEOREM 9. Let S be the set of rational functions above, and approximate from π_n the polynomials of degree $\leq n$, for any $n \geq a + b$ with n > 1. Then S does not have a uniform strong unicity constant.

For the proof we need the results from [11],

$$f(t, x) = \frac{T_b(x) - tT_{|a-b|}(x)}{1 + t^2 - 2tT_a(x)};$$

for $j = n_k$, $n_k + 1$, ..., $n_{K+1} - 1$ the best *j*th degree polynomial approximate for *f* on [-1, 1] is

$$B_{ak+b}(x) = \sum_{l=0}^{k} t^{l} T_{al+b}(x) + \frac{t^{k+2}}{1-t^{2}} T_{ak+b}(x);$$

the error function

$$e_j f(x) = f(t, x) - B_{ak+b}(x)$$
$$= \frac{t^{k+1}}{1 - t^2} \frac{A(\theta)}{B(\theta)},$$

where $A(\theta)/B(\theta) = \cos n_k(\theta + \phi)$ and where $x = \cos \theta$,

$$\cos\phi = \frac{-2t + (1+t^2)\cos(a\theta)}{1+t^2 - 2t\cos(a\theta)}$$
$$\sin\phi = \frac{(1-t^2)\sin(a\theta)}{1+t^2 - 2t\cos(a\theta)},$$

and $A(\theta)/B(\theta) = \pm 1$ alternately at $n_{k+1} + 1$ points.

From [6] we know that these $n_{k+1} + 1$ points are $x_0 = 1$, $x_{n_{k+1}} \equiv 1$, and the $n_{k+1} - 1$ roots of

$$g(t, x) = aT'_{n_k}(x)[-2t + (1 + t^2) T_a(x)] + n_k T_{n_k}(x)(1 - t^2) T'_a(x)$$

and we know

$$g_x(t, x_i) = \frac{(-1)^{+i} an_k [n_k(1+t^2-2tT_a(x_i))+a(1-t^2)]}{x_i^2-1}$$

Now it is easy to check that sgn $e_i(f)(1) = 1$,

sgn
$$e_j(f)(x_i) = (-1)^{+i}, \quad i = 0, ..., n_{k+1},$$

and

$$g_t(x_i, t) = \frac{-2aT'_{nk}(x_i)[1+t^2-2tT_a(x_i)]}{1-t^2}$$

and thus considering x_i as a function of t, 0 < t < 1,

$$\frac{dx_i}{dt} = \frac{2aT'_{n_k}(x_i)[1+t^2-2tT_a(x_i)][x_i^2-1]}{(1-t^2)(-1)^{+i}an_k[n_k(1+t^2-2tT_a(x_i))+a(1-t^2)]}.$$
 (4.1)

Also $g(0, x) = aT'_{n_k}(x) T_a(x) + n_k T_{n_k}(x) T'_a(x) = an_k/n_{k+1} T'_{n_{k+1}}(x)$ and $g(1, x) = 2aT'_{n_k}(x)[T_a(x) - 1].$

Since the roots of g(x, t) are continuous functions of t, we have $x_i(0) = z_i$ where $T'_{n_{k+1}}(z_i) = 0$ while $x_i(1)$ is a root of g(1, x).

Since $\overline{T}_a(x) - 1$ has $\lfloor a/2 \rfloor + 1$ roots (always including 1 and including -1 if a is even) g(1, x) has at most $n_k + \lfloor a/2 \rfloor$ distinct roots in $\lfloor -1, 1 \rfloor$. So as t varies from 0 to 1, the $n_{k+1} + 1$ extreme points of $e_j(f)$ coalesce into at most $n_k + \lfloor a/2 \rfloor$ points.

Proof of Theorem. Assume first that $b \neq 0$ and that $T_a(x) - 1$, $T'_{n_k}(x)$, and $T'_{n_{k+1}}(x)$ have no roots in common. Let

$$-1 < z(n_{K+1}-1) < \cdots < z_1 < 1$$

be the roots of $T'_{n_{k+1}}(x)$ where

$$z(i) = \cos(i\pi/n_{k+1}), \quad i = 1, ..., n_{k+1} - 1$$

and let

$$w(n_k-1) < \cdots < w(1)$$

be the roots of T'_{n_k} where

$$w(i) = \cos(i\pi/n_k), \quad i = 1, ..., n_k - 1,$$

and let

$$q\left(\left[\frac{a}{2}\right]\right) < \cdots < a(1) < q(0) = 1$$

be the roots of $T_a(x) - 1$ where

$$q(i) = \cos(2i\pi/a), \qquad i = 0, ..., \left[\frac{a}{2}\right]$$

and let

$$-1 \leq \lambda\left(\left[\frac{a+1}{2}\right]\right) < \dots < \lambda(1) < 1, \qquad \left(\lambda\left(\left[\frac{a+1}{2}\right]\right) = -1 \text{ if } a \text{ is odd}\right)$$

be the roots of $T_a(x) + 1$ where

$$\lambda(j) = \cos((2j-1)\pi/a, \qquad j = 1, ..., \left[\frac{a+1}{2}\right].$$

Then from [6] in this setting we know

$$M_{n_k}f(t,x) \leqslant M_{n_k+1} \leqslant \cdots \leqslant M_{n_k+1}-1,$$

where $M_n = 1/\gamma_n$ and γ_n is the strong unicity constant when approximating from Π_n . Thus it suffices to show

$$\sup_{0 < t < 1} M_{n_k}(f(t, x)) = \infty.$$

Let $-1 < u(a-1) < \cdots < u(1) < 1$ be the interior extreme points of $T_a(x)$. So u(1), u(3), ... etc., are the $\lambda(i)$ and u(2), u(4), ... are the q(i) ($u(i) = \cos(i\pi/a)$, i=1, ..., a-1). Let I_1 be the largest integer such that $I_1/n_{k+1} < 1/a$, I_2 the largest integer such that $(I_1 + I_2)/n_{k+1} < 2/a$, ..., and I_{a-1} the

largest integer such that $\sum_{i=1}^{a-1} I_i/n_{k+1} < (a-1)/a$. This leads to the following ordering of the zeros under consideration:

$$\begin{split} 1 > z_1 > w_1 > \cdots > w(I_1 - 1) > z(I_1) > u(1) > z(I_1 + 1) > w(I_1) \\ > \cdots > w(I_1 + I_2 - 2) > z(I_1 + I_2) > u(2) > z(I_1 + I_2 + 1) > w(I_1 + I_2 - 1) \\ > \cdots > w(I_1 + \cdots + I_i - i) > z(I_1 + \cdots + I_i) > u(i) > z(I_1 + \cdots + I_i + 1) \\ > w(I_1 + \cdots + I_i - i + 1) > \cdots > w(I_1 + \cdots + I_{a-1} - (a - 1)) \\ > z(I_1 + \cdots + I_{a-1}) \\ > u(a - 1) > A(I_1 + \cdots + I_{a-1} + 1) \\ > w(I_1 + \cdots + I_{a-1} - (a - 1) + 1) > \cdots \\ > z(n_{k+1} - 2) > w(n_k - 1) > z(n_{k+1} - 1) > -1. \end{split}$$

To verify the ordering observe that by the definition of I_1 we have

$$I_1/n_{k+1} < 1/a < (I_1+1)/n_k + 1.$$

Thus

$$I_1 < n_{k+1}/a < I_1 + 1$$
 and $I_1 < K + 1 + b/a < I_1 + 1$.

Thus

$$I_1a - ak - a - b < 0,$$

hence

$$I_1ak + I_1a + I_1b - ak - a - b < I_1ak + I_1b$$

hence

$$I_1 n_{k+1} - n_{k+1} < I_1 n_k,$$

hence

$$(I-1)/n_k < I_1/n_{k+1},$$

hence

$$w(I_1 - 1) > z(I_1).$$

On the other hand

$$I_1 > k + b/a,$$

hence

 $I_1 a > ak + b$,

hence

$$I_1 ak > I_1 a + I_1 b > I_1 ak + I_1 b + ak + b_2$$

hence

$$I_1/n_k > (I_1+1)/n_{k+1},$$

hence

$$z(I_1+1) > w(I_1).$$

The verification of the rest of the ordering can be done in a similar way using induction.

Let $x(1), ..., x(n_{k+1}-1)$ be the interior extreme points of $e_j(f)(x)$

$$-1 < x(n_{k+1}-1) < \cdots < x(1) < 1.$$

Then the x_i fit into the previous ordering as follows,

$$1 > x(1) > z(1), \qquad w(1) > x(2) > z(2),$$

$$x(I_1 - 1) > z(I_1 - 1) > w(I_1 - 1) > x(I_1) > z(I_1),$$

and

$$z(I_{1} + \dots + I_{2j}) > x(I_{1} + \dots + I_{2j}) > u(2j) > x(I_{1} + \dots + I_{2j+1})$$

$$> z(I_{1} + \dots + I_{2j+1}) > w(I_{1} + \dots + I_{2j} - 2j + 1)$$

$$> x(I_{1} + \dots + I_{2j+1}) > \dots$$
(4.2)

This follows easily from (4.1). Furthermore as $t \rightarrow 1$

$$\begin{aligned} x(1) \to 1, & x(2) \to w(1), \dots, & x(I_1) \to w(I_1 - 1) \\ x(I_1 + 1) \to w(I_1), \dots, & x(I_1 + I_2 - 1) \to w(I_1 + I_2 - 2), & x(I_1 + I_2) \to u(2) \\ & x(I_1 + I_2 + 1) \to u(2), & \text{etc.} \end{aligned}$$

Thus note that no w(i) is a \pm limit extremal.

Let A(t) be an alternant for f(t, x). Suppose for some j that A(t) contains $x(I_1 + \cdots + I_{2j})$ and $x(I_1 + \cdots + I_{2j+1})$. Then as $t \to 1$, both $x(I_1 + \cdots + I_{2j})$ and $x(I_1 + \cdots + I_{2j} + 1)$ tend to u(2j). Thus A(1) has cardinality at most $n_k + 1$ and thus it is not a limit alternation set.

Now suppose that the above does not happen for any j. Then we have the following three possibilities:

(i) A(t) contains $x(I_1 + \cdots + I_{2j})$ but not $x(I_1 + \cdots + I_{2j} + 1)$. In this case, to preserve alternation, A(t) cannot contain $x(I_1 + \cdots + I_{2j} + 2)$.

(ii) A(t) contains $x(I_1 + \cdots + I_{2j+1})$ but not $x(I_1 + \cdots + I_{2j})$. Then A(t) does not contain $x(I_1 + \cdots + I_{2j} - 1)$.

(iii) A(t) contains neither $x(I_1 + \cdots + I_{2j})$ nor $x(I_1 + \cdots + I_{2j} + 1)$.

In any case, for each u(2j), A(t) does not contain two of the x(j). Since there are $\lfloor a/2 \rfloor - 1$ of the u(2j)'s if a is even ($\lfloor a/2 \rfloor$ if a is odd), there are a-2 of the interior x(i) that are omitted from A(t) if a is even (a-1) if a is odd). Thus A(t) contains only $n_{k+1}-1-(a-2)=n_k+1$ interior points if a is even $(n_k$ if a is odd). Furthermore A(t) must include x(1) and $x(n_{k+1}-1)$. Thus for A(t) to be an alternant if a is even, A(t) must include either 1 or -1. But as $t \to 1$, $x_1 \to 1$ and $x(n_{k+1}-1) \to -1$. So A(1) has cardinality at most $n_k + 1$. If a is odd, A(t) must include both 1 and -1and again A(1) has cardinality at most $n_k + 1$.

In either case A(1) is not a limit alternation set and consequently E^0 does not contain a limit alternation set and the result follows from Theorem 7.

Now if $b \neq 0$ and $T_a(x) - 1$, $T'_{n_k}(x)$, and $T'_{n_{k+1}}(x)$ do have some roots in common, the argument is similar to the preceding case and uses the fact that if x is a common root of T'_{n_k} and $T_a(x) - 1$, then x is also a root of $T'_{n_{k+1}}$ and if Z is the root of $T'_{n_{k+1}}$ closest to x then $z \to x$ as $t \to 1$. Also in (4.2) some of the strict inequalities > become \geq .

Finally if b=0, then all the interior roots of $T_a(x)-1$ are roots of $T'_{n_k}(x) = T'_{ak}(x)$. Thus g(1, x) has only $n_k - 1$ interior roots and E^0 has cardinality $n_k + 1$. Since no root f $T'_{n_k}(x)$ that is not a root of $T_a(x) - 1$ can be a \pm limit extremal the result follows from Theorem 4.

ACKNOWLEDGMENT

The authors are indebted to Prof. Darrell Schmidt for his exceptionally valuable suggestions for the clarification and rewriting of the paper.

REFERENCES

- 1. M. BARTELT, On Lipschitz conditions, strong unicity, and a theorem of A. K. Cline, J. Approx. Theory 14 (1975), 245-250.
- 2. M. W. BARTELT AND H. W. MCLAUGHLIN, Characterizations of strong unicity in approximation theory, J. Approx. Theory 9 (1973), 255-266.

- 3. A. K. CLINE, Lipschitz conditions on uniform approximation operators, J. Approx. Theory 8 (1973), 160-172.
- 4. C. B. DUNHAM, A uniform constant of strong uniqueness on an interval, J. Approx. Theory 28 (1980), 207-211.
- 5. M. S. HENRY AND D. SCHMIDT, Continuity theorems for the product approximation operator, *in* "Theory of Approximation with Applications" (A. G. Law and B. N. Sahney, Eds.), Academic Press, New York, 1976.
- 6. MYRON S. HENRY AND JOHN J. SWETITS, Precise orders of strong unicity constants for a class of rational functions, *J. Approx. Theory* **32** (1981), 292–305.
- 7. S. KARLIN AND W. STUDDEN, "Tchebycheff Systems with Application in Analysis and Statistics," Wiley, New York, 1966.
- 8. A. KROO, The continuity of best approximations, Acta Math. Acad. Sci. Hungar. 30 (1977), 175–188.
- D. J. NEWMAN AND H. S. SHAPIRO, Some theorems on Chebyshev approximation, Duke Math. J. 30 (1963), 673-681.
- 10. S. O. PAUR AND J. A. ROULIER, Uniform Lipschitz and strong unicity constants on subintervals, J. Approx. Theory 32 (1981), 247-255.
- T. J. RIVLIN, Polynomials of best uniform approximation to certain rational functions, Numer. Math. 4 (1962), 345-349.